Metabolic heterogeneity of muscle fibres.
نویسنده
چکیده
Mammalian skeletal muscle is an extremely heterogeneous tissue. Its diversity results from a spectrum of fibres which are metabolically suited to a wide range of functional demands. As judged from enzyme activity analyses of single fibres, the metabolic properties of fibres belonging to the same motor unit are similar or identical. It is likely, therefore, that the phenotype expression of muscle fibres is primarily under neural control. Differences in recruitment patterns of various motor units explain the wide range of metabolic properties as evidenced by pronounced variations in enzyme activities and enzyme activity ratios. There exist large overlaps between the activity spectra of various enzymes of anaerobic and aerobic metabolism in slow- and fast-twitch fibres. Nevertheless, these two major fibre classes can be distinguished by discriminative enzyme activity ratios (e.g. phosphofructokinase/malate dehydrogenase, phosphofructokinase/3-hydroxyacyl-CoA dehydrogenase, fructose-1,6-diphosphatase/phosphofructokinase). Moreover, slow-twitch fibres display an H-type isozyme pattern of lactate dehydrogenase, whereas fast-twitch fibres are characterized by a predominance of LDH-5. No clear-cut differences exist between enzyme activity profiles and LDH isozyme patterns of the IIA and IIB subgroups of fast-twitch fibres. Comparative studies indicate that the metabolic properties of IIA and IIB fibres vary in different animal species. This observation supports the notion that metabolic and myosin-related properties of muscle fibres may be regulated independently. Due to relatively high turnover rates of enzymes of energy metabolism in muscle, changes in functional demands may be met by relatively rapid changes in metabolic properties. In view of these findings it is not surprising that muscle fibres display a spectrum of metabolic properties and represent stages within a dynamic equilibrium.
منابع مشابه
How flexible is the neural control of muscle properties?
The issue addressed in this paper is to what extent are selected physiological properties and associated protein systems of muscle fibres controlled or regulated by neuronal systems. One extreme position would be that all muscle proteins are controlled completely by the neural system that innervates the muscle. The opposite position would be that none of the muscle proteins are under neural inf...
متن کاملHow Flexible Is the Neural Control of Muscle
The issue addressed in this paper is to what extent are selected physiological properties and associated protein systems of muscle fibres controlled or regulated by neuronal systems. One extreme position would be that all muscle proteins are controlled completely by the neural system that innervates the muscle. The opposite position would be that none of the muscle proteins are under neural inf...
متن کاملCellular and Molecular Basis of Heterogeneity in Contractile Performance of Human Muscles
Human skeletal muscles are able to fulfil very different mechanical tasks. The basis of this ability can be found in the existence of different fibre types which can be activated selectively by the nervous system in relation to the required performance. The study of single muscle fibres dissected from biopsy samples has allowed to characterize contractile performance in relation to molecular co...
متن کاملThe effect of metabolic inhibitors on the cockroach nerve-muscle synapse.
1. The application of metabolic inhibitors to nerve-muscle synapses on 'white' and 'red' fibres in the retractor unguis muscles of P. americana and B. giganteus resulted in a dramatic increase in the spontaneous miniature potential discharge and was accompanied by a summation of the miniature potentials to form 'composite' potentials. 2. Axon terminals associated with 'white' muscle fibres resp...
متن کاملHuman muscle fatigue: the significance of muscle fibre type variability studied using a micro-dissection approach.
During human locomotion the ability to generate and sustain mechanical power output is dependent on the organised variability in contractile and metabolic properties of the muscle fibres that comprise the active muscles. In studies of human exercise we have used a micro-dissection technique to obtain fragments of single muscle fibres from needle biopsies before and after exercise. Each fibre fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 115 شماره
صفحات -
تاریخ انتشار 1985